Arc Length Formulas:

Derivation of Arc Length Formula:

$$= \int \int (dx)^{2} + (dy)^{2} dx$$

$$= \int \int (dx)^{2} + (dy)^{2} dx$$

$$= \int \int (dx)^{2} + (dx)^{2} dx$$

$$= \int \int (dx)^{2} + (dx)^{2} dx$$

$$\frac{8}{9} \cdot y = x^{3/2} + 2000 \quad (11) \quad 70 \quad (2, 2\sqrt{2})$$

$$y = \frac{3}{2}x^{1/2}$$

$$y = \frac{3}{2}x^{1/2}$$

$$y = \frac{3}{2}x^{1/2}$$

$$y = \frac{3}{2}x^{1/2}$$

$$\frac{4}{9} \cdot \frac{2}{3} \cdot \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2}$$

$$\frac{8}{27} \cdot \left(\frac{22}{4}\right)^{3/2} - \left(\frac{13}{4}\right)^{3/2}$$

$$= \frac{4}{9} \cdot \left(\frac{3}{4}\right)^{1/2} \cdot \frac{3}{4}$$

$$= \frac{4}{9} \cdot \left(\frac{12}{4}\right)^{1/2} \cdot \frac{3}{4}$$

Question 5

Let R be the shaded region bounded by the graph of $y = xe^{x^2}$, the line y = -2x, and the vertical line x = 1, as shown in the figure above.

- (a) Find the area of R.
- (b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line y = -2.

(c) Write, but do not evaluate, an expression involving one or more integrals that gives the perimeter of R.

m=x2

Question 5

Let R be the shaded region bounded by the graph of $y = xe^{x^2}$, the line y = -2x, and the vertical line x = 1, as shown in the figure above.

- (a) Find the area of R.
- (b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line y = -2.
- (c) Write, but do not evaluate, an expression involving one or more integrals that gives the perimeter of R.

Question 5

Let R be the shaded region bounded by the graph of $y = xe^{x^2}$, the line y = -2x, and the vertical line x = 1, as shown in the figure above.

- (a) Find the area of R.
- (b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line y = -2.
- (c) Write, but do not evaluate, an expression involving one or more integrals that gives the perimeter of R.

$$= 3x_36x_5+6x_5$$

$$\frac{4x}{4h!} = x_1 3x_6x_5+6x_5$$

$$A' = x6x_9$$

HW: CHAPTER 7 AP PACKET

#15,30,61-69 odo,70,71